首页> 外文OA文献 >Topological spin-singlet superconductors with underlying sublattice structure
【2h】

Topological spin-singlet superconductors with underlying sublattice structure

机译:具有底层亚晶格的拓扑自旋单线态超导体   结构体

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Majorana boundary quasiparticles may naturally emerge in a spin-singletsuperconductor with Rashba spin-orbit interactions, when a Zeeman magneticfield breaks time-reversal symmetry. Their existence and robustness againstadiabatic changes is deeply related, via a bulk-edge correspondence, totopological properties of the band structure. The present paper shows that thespin-orbit may be responsible for topological transitions when thesuperconducting system has an underlying sublattice structure, as it appears ina dimerized Peierls chain, graphene, and phosphorene. These systems, whichbelong to the Bogoliubov-de Gennes class D, are found to have an extra symmetrythat plays the role of the parity. It enables the characterization of thetopology of the particle-hole symmetric band structure in terms of bandinversions. The topological phase diagrams this leads to are then obtainedanalytically and exactly. They reveal that, because of the underlyingsublattice structure, the existence of topological superconducting phasesrequires a minimum doping fixed by the strength of the Rashba spin-orbit.Majorana boundary quasiparticles are finally predicted to emerge when the Fermilevel lies in the vicinity of the bottom (top) of the conduction (valence) bandin semiconductors such as the dimerized Peierls chain and phosphorene. In atwo-dimensional topological superconductor based on (stretched) graphene, whichis semimetallic, Majorana quasiparticles cannot emerge at zero and low doping,that is, when the Fermi level is close to the Dirac points. Nevertheless, theyare likely to appear in the vicinity of the van Hove singularities.
机译:当Zeeman磁场破坏时间反转对称性时,马约拉纳边界准粒子自然会出现在具有Rashba自旋轨道相互作用的自旋单超导体中。它们的存在和对绝热变化的鲁棒性通过体边缘对应关系与能带结构的拓扑特性密切相关。本文表明,当超导系统具有潜在的亚晶格结构时,自旋轨道可能是拓扑转变的原因,因为它出现在二聚Peierls链,石墨烯和磷烯中。这些系统属于Bogoliubov-de Gennes类D,具有对称性,具有额外的对称性。通过能带反转,可以表征颗粒-孔对称能带结构的拓扑。然后,可以精确地解析得出由此导致的拓扑相图。他们发现,由于底层亚晶格结构的存在,拓扑超导相的存在需要由Rashba自旋轨道的强度固定的最小掺杂量。当费米能级位于底部附近(顶部)时,最终预测了马约拉纳边界准粒子的出现。价)的半导体(如二聚化的Peierls链和磷光体)。在基于(拉伸)石墨烯的二维拓扑超导体(半金属)中,Majorana准粒子不能以零掺杂和低掺杂出现,也就是说,当费米能级接近狄拉克点时。但是,它们很可能出现在van Hove奇点附近。

著录项

  • 作者

    Dutreix, C.;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号